Artificial intelligence (AI) is technology and a branch of computer science that studies and develops intelligent machines and software. Major AI researchers and textbooks define the field as "the study and design of intelligent agents", where an intelligent agent is a system that perceives its environment and takes actions that maximize its chances of success.[2] John McCarthy, who coined the term in 1955, defines it as "the science and engineering of making intelligent machines".
AI research is highly technical and specialised, and is deeply divided into subfields that often fail to communicate with each other. Some of the division is due to social and cultural factors: subfields have grown up around particular institutions and the work of individual researchers. AI research is also divided by several technical issues. Some subfields focus on the solution of specific problems. Others focus on one of several possible approaches or on the use of a particular tool or towards the accomplishment of particular applications.
The central problems (or goals) of AI research include reasoning, knowledge, planning, learning, communication, perception and the ability to move and manipulate objects. General intelligence (or "strong AI") is still among the field's long term goals. Currently popular approaches include statistical methods, computational intelligence and traditional symbolic AI. There are an enormous number of tools used in AI, including versions of search and mathematical optimization, logic, methods based on probability and economics, and many others.
The field was founded on the claim that a central ability of humans, intelligence—the sapience of Homo sapiens—can be so precisely described that it can be simulated by a machine. This raises philosophical issues about the nature of the mind and the ethics of creating artificial beings, issues which have been addressed by myth, fiction and philosophy since antiquity. Artificial intelligence has been the subject of tremendous optimism but has also suffered stunning setbacks. Today it has become an essential part of the technology industry and many of the most difficult problems in computer science.
0 comments:
Post a Comment